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stresses that often occur for small values of tb/r for impulse-
type heat fluxes.

The corresponding formula for @ = 0 has the basic solution?
Ay(r,t) with

1 bi\1/2 b —
Az(T,t) “ ]; [2 (-ar—t> 1 erfe (2(—01’;5> 4+

at(b + 37‘)
2(6 3)1/2 erfe <2( t)llz) ‘ ] (24)

and T.(r,t) = Ti(r,t) to this order of accuracy.

It will be observed, comparing Eq. (22) and Eq. (24), that
the first terms of this expansion are independent of the inner
radius of the cylinder. Physically, this shows that, for the
initial temperature changes only, the reflection of the “tem-
perature wave” at the inner boundary may be neglected, and
the temperature may be obtained as if the cylinder were solid.

As time goes on, however, this approximation will get
worse, but for impulse-type heat fluxes it should be sufficiently
accurate to predict maximum heating rates. The first form
for T [Eq. (14)] is useful when @’(¢ — 7) is an impulse-type
function, so that (¢t — 7) is a step function.
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An Alternate Interpretation
of Newton’s Second Law

M. Botraccint*
Unaversity of Arizona, Tucson, Ariz.

Introduction

HE derivation of the momentum equation for variable

mass systems has been reopened recently for discussion.
In these various discussions! two assumptions usually are
made: 1) the classical momentum equations do not apply
to systems of variable mass; and 2) the derivation of the
rocket equation requires two separate control volumes con-
taining a total constant mass.

In this paper it will be shown that, although assumption 2
is a result of assumption 1, assumption 2 denies assumption
1. It will be shown that the classical momentum equation
for a particle is given in an incomplete form and that New-
ton’s equation (in the classical expression) does lead to the
rocket equation.

Assumption 1 thus will be shown to be unnecessary, and
assumption 2 will be replaced by a calculus operation. A
general definition of momentum, valid for Lebesgue measur-
able mass,?2 will be developed. The new definition of mo-
mentum will be shown to be valid for point masses, summa-
tions of mass points, piecewise continuous masses, con-
tinuous masses, and for both time variable and time invariant
masses.

Standard Derivation of ‘“Rocket” Equation

It is customary to define the law of linear momentum in
terms of the mass m;, velocity v;, and the net force F;, acting
on the 7th particle of a system of particles:?

F; = mi(dv;/dt) = (d/dt)(m.v.) (1)
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For a collection of n particles, Newton’s second law becomes
2,: Fi = El(d/dt)(m. Vi)

If the number of particles is time constant, the summation
and the differentiation can be interchanged

in which G is the total linear momentum.

Obviously, the derivation of Eq. (2) requires G to be the
momentum of a system of constant mass. It is possible,
however, to use Eq. (2) on variable mass system by the
following artifice.

Let there be two volumes Y and Yr having a common
boundary. Let Y be the control volume for which the mo-
mentum G is to be found, and let the momentum of the par-
ticles in Yz be Gz. If it is assumed further that the total
mass in the two volumes is a constant, then Eq. (2) applies:

;B = (d/d)(G + Gr) = (dG/dt) + (dGr/dt)  (3)

The second term on the right of Eq. (3) seems to imply that
forces acting on Yz should have an effect on Y. This
physically indefensible result can be removed by letting the
volume Yz approach zero. In the limit, dGx/dt simply be-
comes the rate at which momentum crosses the boundary of
Y. Equation (3) is the expression for the momentum
theorem of variable mass systems.

Equation (3) can be applied to a single particle that enters
Y at time T and leaves at time 7:

1) For time ¢t < T4, Eq. (8) is identically zero.

2) For time ¢ > T, > T4, Eq. (3) is identically zero.

3) At times T, and T, dG/dt = mdv/dt, and dGg/di
represents an impulsive change of momentum on the bound-
ary.

If one defines u(f — 7Th) as a unit step function open
on the left and u(t — T) a unit step function open on
the right, Eq. (3) becomes for a single particle

[l — Th) — ue(t — To)JF: =
@ — Th) — ue(t — To) Ima(dve/dt) +
ot — Tomsv: — 6(¢ — To)ymv; (4)

in which (¢t — T') is the Dirac Delta or unit impulse function.?
It is well known that

(d/dt)[ut — T)] =
Thus Eq. (4) becomes
Ai(Ty,ToO)Fs = (d/dt) [A«(Ty, Totymavi] (5)
in which A4, the closed pulse function, is defined as

0 t< T
Ai(T1,T2:t> =<1 T, >t b~ T1
0 t> 1T,

Now the function A; is nonzero only for particles in the con-
trol volume Y'; thus one can write the equation for a system
of particles by summing over all particles in ¥ and all particles
outside of Y. (This is the division into Y and Yg, except
that now Yz can be any volume sufficiently large to contain
all particles that will be in Yz at any time and any other addi-
tional particles. Yy could, for example, contain all the par-
ticles in the universe except for the particles in Y.)
Thus the momentum equation becomes

i AF; = i [j—t (AimiV’i)jl
i=1

=

it —1T)

Here the interchange of derivative and summation is valid

ZA F; —Zt(ZA m,vt>

i=1

but A; = 1 for particles inside ¥ and zero for particles out-
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side, whence one obtains (assuming » particles inside Y)
i dG

d n
ZF = [Z ‘”““"] ~u ©
That this is equivalent to Eq. (3) can be seen immediately
by noting that

d[ & L) oG dn
4 Vi = Y iV YT 7
dt[i;(’""):\ i;dt(mv)+bndt @
in which the first term on the right is the rate of change of
momentum within ¥ and the second term is the rate at which
momentum crosses the boundary. Note that the derivatives
exist only in the formal or Dirac sense, since G is discon-
tinuous. It can be shown, however, that

n = EA1
=1

and that 0G/0n represent an average momentum of the par-
ticles crossing the boundary at a given instant.

Equation (6) proves that assumption 1 is incorrect and
that the classical momentum equation is valid for variable
mass systems. It is possible to obtain Eq. (6) directly from
Eq. (3) without recourse to the division of space into ¥ and
Yz simply by proceeding from Egs. (3-7) and thence
to (6). It also is possible to obtain Eq. (6) by writing the
momentum summation at time ¢ and ¢ +A¢ and taking the
limit of the difference. This process yields Eq. (7) directly
in terms of unit impulses on the boundary.

General Principle

Within a system, a particle located at (x:, y;, zx) has a mass
min(e — z)u(y — yHulz — 2)

The unit step functions are all open on the right., Thus the
mass within Y becomes

m o= 3 migu(r — z)uly — y)ulz — =)
4.5k
It is well known that the Stieltjes-Lebesgue integral with
respect to a unit step is?

7B = S1@ dluk — 9]

and therefore
G =Zmvi= [vdm (8)

By a simple limit procedure m may be made continuous,
from which it can be seen that Eq. (6) applies to continuous
mass systems. That this statement is true can be demon-
strated easily. Let m be continuous; then dm/dY = pis
the mass density and dY = dadydz. Select a system of
orthogonal coordinates hi, hs, hs such that hy = p(t) represents
the outer boundary of ¥; p(f) is a function of time, since the
control volume Y is defined by the mass, and mass is moving
on the boundary. Then

= f ab fc ! fe pr dadydz = j;p j;q j:)r vp Jdhidhedhs

a, b, ¢, d, e, f, and p are functions of time [these are equiva-
lent to the upper summation limit in Eq. (6)], and J is the
Jacobian of the transformation. Applying the standard
rule for differentiating under the integral sign,® one obtains

dG p (e frO dp
5 - f . fo fo 5 (VD dhudhodhs + 5 R(p) - (9)

where

R(p) = j;q fo Vo Jdhudh,
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at hy = p. Equation (9) represents the rocket equation,
since the first term on the right is the rate of change of mo-
mentum in ¥, and the second term is the rate at which
momentum crosses the boundary.

Coneclusions

1) If the momentum of a mass system is represented by

the Stieltjes-Lebesgue integral

G=fvdn (10)

in which the integral is taken over all the mass in the system,
then Newton’s equation

ZF = dG/dt (1

is valid for all continuous and discontinuous mass system
and for time-variable as well as time-fixed masses.
2) The equation

n d n
=2 Vi 12
LSO "

is valid for time variable mass systems.
3) In Eq. (12)

8

n = ATy, Tot) (13)

1=

fun
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Singular Line of the Method of
Integral Relations

CzesLaw P. KENTZER*
Purdue University, Lafayette, Ind.

N the method of integral relations, as applied by Bielot-
serkovskii to the blunt-body problem,:—* there oceccurs a
singular line that cuts across the shock layer. The equation
of the singular line is obtained by equating the determinant of
the system of resulting ordinary differential equations to zero.
This equation, however, gives no information about the
position of the singular line, and its physical significance has
not been explained in the literature.

Bielotserkovskii’s method has been criticized often for its
reliance on the boundary conditions given on the singular
line. The main objection to such a procedure seemed to be
the fact that coordinates of the singular line depend not only
on the solution but also on the choice of the coordinate
system. This note explains this apparent discrepancy by
giving the singular line a physical interpretation.

A problem of a blunt body placed at zero incidence in a
superscnic flow is considered. Perfect gas is assumed. With-
out loss of generality, the s,n coordinate system is chosen,
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